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Abstract

This paper is devoted to a new method for non-convex unimodal opti-
mization named Solar Method. It consists of subsequential solving some
auxiliary optimization problems on randomly chosen low-dimensional
sections of the original space. We propose the general scheme of Solar-
like methods and describe some options for the random generation of
secant directions (rays) using or not the gradient direction. We inves-
tigate the ways to scale the proposed scheme by several levels of linear
dependence on the chosen basic variables. We consider several possible
approaches to optimization on subspaces: various settings of the dimen-
sion of problems, local and global methods to solve them. We compare the
operation of the Solar Method, Steepest Descent method, and Conjugate
Gradient Method on Rosenbrock–Skokov function in numerical experi-
ments that demonstrate the competitiveness of the proposed approach.

Keywords: Secant subspaces, Optimization on random subspace, Q-search
method, Low-dimensional optimization
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1 Introduction

Exploring the fundamentally new constructive means to efficiently solve
extremal problems belonging to a class of unimodal optimization is an urgent
and essentially open challenge. Striving to achieve the results in this direc-
tion, one should experimentally test the potential of many plausible techniques
on various problems. Of course, if many experimental results confirm the effi-
ciency and competitiveness of a new scheme, it is reasonable to move on to
the theoretical justification of the new method and spend efforts on provid-
ing guarantees for it. Again: if at the moment there are enough computational
facts that show its practical efficiency. In anticipation of this, it is also rea-
sonable to submit some first observations on the algorithm’s operation to let
the discussion by the community of practice. A strange example of not fol-
lowing this order is the Two-dimensional Gradient Searching method invented
by Yu.E. Nesterov more than thirty years ago (personal correspondence), the
theoretical design of which is carried out quite recently [1].

In this paper, we look to the concept of two-level methods. One traditionally
uses such algorithms in two-level operations research problems. We propose to
apply a similar scheme for standard, single-level mathematical programming
problems. The approach is received the conventional name Solar Method. The
main idea of the approach is a step-by-step non-deterministic decomposition
of the set of variables into dependent and independent ones. The dependent
variables vary within the random rays, going through the “record” point and
parameterized by the independent variables (hence the method’s name). Thus,
the trick here is the two-level scheme, the one level of which is determined by
the variables of the second one. At each step of the algorithm, the original
problem is replaced by an auxiliary low-dimensionality problem on the chosen
ray. We consider various methods for solving the optimization problem with
respect to independent variables, including both local and non-local search
algorithms. In particular, we used the well-known Nelder–Mead method and
the Q-search method we are developing [2].

Further, we denote the uniform (categorical, if discrete) distribution on the
set of valuesX by UX, the special case is U{xi} := U{xi}ni=1, where {xi}ni=1 :=
{x1, x2, ..., xn}, denote the i-th coordinate of the vector by [x]i, denote the

partial per-coordinate derivative by ∇if(x) :=
∂f(x)
∂[x]i

. In the algorithms, x ∼ U
means that random variable x is drawn from the distribution U , “=” after
the variable means the declaration with definition, while “←” means only a
re-definition of the previously declared variable.

The paper is structured as follows. In Section 2 we introduce the con-
cept of ray that is the generalization of the subspace notion in a framework
of the proposed hypothesizing optimization scheme. We also provide a for-
mal description of some possible algorithms generating rays. In Section 3 we
formally describe the proposed optimization method itself. In Section 4 we
explore the options of methods to solve the auxiliary problems, discuss some
low-dimensional methods suitable for the case of the small dimension of rays,
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that is recommended regime for the proposed approach. Here we also present
some numerical experiments demonstrating the specific details of the method’s
operation and advantages in comparison with the Gradient Method and Con-
jugate Gradient Method. In Section 5 we discuss the scaling of the proposed
scheme allowing to complicate method if needed.

2 Random secant subspaces and rays

Before describing the scheme of the Solar Method, let us introduce the concept
of secant subspaces and, more generally, rays. Further, we will define the auxil-
iary problems within the Solar Method as contractions of the original problem
into them. At the same time, the choice of parameters (directions) of these rays
is a wide enough question to be taken out in a separate section of the paper.
The proposed approach is based on the following method of forming the ray:

1. choosing coordinates defining the direction, the basis of the subspace,
2. splitting remaining coordinates of original space into groups, binding them

with base coordinates (one original coordinate is dependent on one base
coordinate),

3. choosing the parameters of these dependencies.

Now, we describe formally the algorithm implementing this sequencing:

Algorithm 1 Procedure generating random rays (with linear dependencies)

Require: n is a dimensionality of original space, x is a point in original space,
b is a number of base coordinates (dimensionality of subspace), Ak is an
amplitude of the proportionality coefficients for linear dependencies

1: bj ∼ U{1, ..., n} ∀j ∈ {1, ..., b}
2: for i ∈ {1, ..., n} \ {bj}bj=1 do
3: ki ∼ U [−Ak, Ak]
4: hi = xi − ki · xbm , bm ∼ U{bj}
5: end for

There is already come out a substantial drawback of the outlined scheme.
Indeed, within this variety of base directions and parameters for linear depen-
dencies, we cannot guarantee that randomly chosen parameters provide a
suitable relaxation for considered function every time. Even for a simple con-
vex function (quadratic, for instance), one can choose a subspace close enough
to the tangent for some contour line, for which the decrease of function value
at the method step would be minimal, with whatever accuracy the auxiliary
problem is solved. Moreover, for the arbitrary unimodal function, some chosen
subspace may provide a fruitful relaxation to a problem (in terms of decrease
in function value), but the next point obtained with it, corresponding to the
solution of the corresponding auxiliary problem, may be sent in the direction
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opposite to the direction to a global minimum. It can lead to a divergence in
the argument and an expected slowdown in function value decrease.

The method we propose solves the problem above with a conceptually new
approach. To reveal it, let us look at the problem statement we have from
such a detached point of view: in line with the classic oracle approach to
optimization [3], we have no information about the function we optimize at the
beginning, while our goal is to collect enough information to find its minimum.
Further, inspired by the general natural scientific approach, we can formulate
any (unwarranted) hypotheses (of some specific form) and test them to explore
the problem instead of using a standard gradient oracle. If the hypotheses are
simple enough, it is easy to iterate over them (generate them randomly) until
the next one sufficiently simplifies a problem. For example, in Algorithm 1
we assume that the change in function is determined by some base variables,
while other variables can be set linearly dependent without loss of information.
The judging on the quality of a hypothesis is based on the assessment of the
corresponding relaxation quality. Of course, some of them may turn out to
be unproductive (most of them will), and in this case, it would be reasonable
to discard them, waiting for a more successful generation. In the method we
propose, it is expressed with such a concise verification:

if f(x̃t+1) < f(xt) then

xt+1 ← x̃t+1;

end

where x̃t+1 is a (approximate) solution for the auxiliary problem corresponding
to a ray.

Thus, the approach we propose relies on generating many candidate rays
(bases and dependencies parameters), some of which become discarded, while
the others are confirmed and accepted to form the next point of the method.

Nevertheless, the question of generating more suitable and less poor rays
remains a key. Even for the simple linear parametrization, we have an impres-
sive cardinality of possible rays parameters, and we need to reduce this set
or generate more favorable random configurations more likely. A natural way
to achieve this is to use the available first-order information to form new rays
at every iteration (point) of the method. More precisely, we can generate rays
with a direction close to that one for the gradient. Indeed, since (anti-)gradient
provides the steepest local decay direction, it is reasonable to assume that:

1. the minimum within the close (in terms of somewhat ”angle” between one-
dimensional subspace defined by the gradient and the chosen one) subspace
would be better than a random one,

2. hypothesis of near-linear behavior of the function would be more likely with
parameters defined by gradient, at least in the vicinity of the point.

On the other hand, if the parameters of linear dependencies correspond to
the gradient direction exactly, optimization along such a ray will lead to the
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same point as for the standard steepest gradient descent step. To preserve the
freedom of the hypothesized approach, we take the weighted sum of gradient
and a random direction to fit the ray. More formally, we propose the following
algorithm for forming the rays:

Algorithm 2 Gradient-based procedure generating random rays

Require: n is a dimensionality of original space, x is a point in original space,
b is a number of base coordinates, Ak is an amplitude of the proportionality
coefficients for linear dependencies, α is a weighting factor

1: bj ∼ U{1, ..., n} ∀j ∈ {1, ..., b}
2: for i ∈ {1, ..., n} \ {bj}bj=1 do

3: k̃i ∼ U [−Ak, Ak]
4: bm ∼ U{bj}
5: ki = α · (∇if(xi)/∇if(xbm)) + (1− α) · k̃i
6: hi = xi − ki · xbm

7: end for

Of course, this does not solve the problem: there remains significant vari-
ability in the choice of rays. Alas, in the general class of unimodal functions,
most of them can be quite disadvantageous. One way to partially overcome
this is to equip the generating algorithm with a supervised learning technique
with the aim of more reduce the generation’s number. The latter could take
the successes and failures of the previously formulated hypotheses to form the
next one or prune some possible choices. Note that this concept is independent
of the chosen linear form of dependencies and is quite general. In this way,
one can apply a whole variety of simple gradient direction correcting policies
(momentum, exponential moving average, conjugate gradient-like). One can
also use some advanced practices (meta-learning) to explore the function land-
scape by generating probes. Machine learning is an expected extension of this
list of exploration techniques. The breadth of perspectives is immense and is
out of the scope of this paper.

Remark 1 The proposed scheme allows using both linear rays (subspaces with a linear
dependence of coordinates on the base ones) and non-linear ones with more com-
plicated dependencies (for example, polynomial). In this case, we have two options:
generate coefficients for polynomial randomly or form them fitting some probes that
are points and gradients (interpolation regime). For example, in a two-dimensional
space, one can lead a parabola through the three points, or the two points, if the
derivative in one of them is given.

Following this, we can propose a simple modification to a special case of the pro-
posed scheme. Let us name it as Mustache Method. Its iteration consists of randomly
generating several probes (in a given box-constrained feasible set), analytically plot-
ting a curve through them, and then applying curvilinear optimization techniques [4]
to form the next point of the method. In this method, mustache is a one-dimensional
ray. One can easily extend this approach to a general Solar Method scheme.
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3 Solar Method scheme

Now we return to the discussion of the proposed scheme. To begin with, let us
explicitly describe the formulation of the problem being solved:

min
x∈B

f(x),

where f is a continuous unimodal function (if algorithm uses gradient in
rays generating procedure, function is also differentiable), B ⊂ Rn is a
box-constraint subset of the original space, that is B = [a1, b1]× ...× [an, bn].

In the previous section we introduced the concept of the ray. This was
necessary in order to unify the shape of the subsets, the constricted of the
original problem to which would be the auxiliary problems. Let us formulate
formally their structure:

min
y∈B̃

φ(y), (1)

where B̃ ⊂ B is box-constrained feasible set constricted to the selected base
coordinates, and φ is an auxiliary function that is a constriction of f to the
chosen ray, parametrized with {ki}, {hi}, {bm(i)} (x|B here means a projection
of the point onto the specified set by applying the following transformation
xi = max{ai,min{xi, bi}}):

φ(y) := f(x(y)|B),

where xi(y) :=

{
yj if i ∈ {bj}
hi + ki · ybm(i) else

, ∀i ∈ 1, ..., n.

Let us move now to the description of the Solar Method: the algorithm
combining the rays generating procedure, sorting out the formulated hypothe-
ses, and solving the auxiliary problems. The algorithm is simple: relying on
the last point generated by the method, it constructs the ray with random
parameters that go through this point, then constricts an original problem on
this ray and solves it with some other method. If the solution obtained on the
ray and lifted to the full-dimensional space is better than the current point,
we accept it as the next point of the method. The searching for a solution on
a random linear subspace selected from the entire manifold resembles move-
ment along a ray of the sun, and this analogy gave the name to the method. In
following Algorithm 3 we provide a more formal description of the approach
explained above:

Let us note some practically interesting properties of this method following
directly from its construction and a concept of hypothesizing approach:

1. monotone. Each drawn subspace contains at least the reference point
through which it goes, and therefore, if we set method M to the small
enough accuracy and get the corresponding solution for the auxiliary prob-
lem, it is possible to find a point from the vicinity of the reference or
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Algorithm 3 Solar Method

Require: x0 is a starting point, T is a number of hypothesis generations, b
is a number of base coordinates,M is a method optimizing corresponding
b-dimensional functions

1: for t = 0, ..., T − 1 do
2: Generate parameters {ki}, {hi}, {bm(i)} of the random ray through the

point xt

3: yt = [[xt]b1 , ..., [xt]bb ]
4: By running the methodM from the starting point yt
5: find the solution y⋆ of the auxiliary problem (1)

6: [x̃t+1]i =

{
y⋆j if i ∈ {bj}
hi + ki · y⋆bm(i) else

, ∀i ∈ 1, ..., n

7: if f(x̃t+1) < f(xt) then
8: xt+1 ← x̃t+1

9: end if
10: end for

the reference itself as an approximate solution to the auxiliary problem.
So, evaluating the function in every next point, we obtain the guaranteed
non-increasing sequence of values.

2. no long-term convergence decline. The described method is highly
stochastic, and its convergence depends on the advantageousness of the rays
generated at each iteration. However, no matter how complex the landscape
of the optimized function is, it has a minimum point and hence has a sub-
space going through it or in its vicinity. Thus, by a possible long search, the
method will sooner or later choose an advantageous direction and improve
the last solution. The method’s convergence curve is abrupt due to this.

4 Subsolvers and numerical experiments

An essential hyperparameter of the Solar Method is the auxiliary methodM
used to solve the problems on every selected ray. There is great freedom in
choosing this method. But due to the usual (and recommended) small num-
ber of variables in the basis b and hence the low-dimensionality of auxiliary
problems, it is reasonable to choose methods that are effective in solving low-
dimensional problems. Here we face a trade-off: to solve every subproblem with
high accuracy (to find a point that significantly improves the last one) or solve
them very quickly (to have time for checking more hypotheses). Indeed, this is
a standard compromise in optimization theory. But note that in the proposed
scheme, this question is not a key one. If the accuracy is not enough, we can
skip the hypothesis even if it is good, hoping to generate a not worse further.
And vice versa, if we get the best out of every generation, we can perform
more small steps accumulating progress.
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Remark 2 A promising perspective here is to use two methods in the compound:
one for assessing the chosen hypothesis and another for the corresponding auxiliary
function optimization. Due to the presence of box constraints in the problem state-
ment, we can check the quality of chosen ray by evaluating the function in several
uniformly random probes in a given feasible set. A call for the zero-order oracle at
some points can be very effective in terms of working time. In this way, one could
reduce the time of the method’s operation, spent on unsuccessful strategies, by their
preliminary filtering.

In this section, we consider some options for the method to solve the
auxiliary problems in the Solar Method. The first of them is the widely-
known Nelder–Mead method [5], which proved its practical efficiency in many
independent numerical experiments [6]. The second considered method is the
lesser-known Q-search algorithm proposed by A.Yu. Gornov. Insofar as we
cannot provide an appropriate reference to some original paper devoted to the
Q-search, we describe the method below. Its iteration consists of generating
several random probes in the selected box-constrained feasible set, choosing
one of them as a reference (for some rule of choosing), determining the best
point among the reference point and the last point generated by the method,
and cutting off a part of the box so that the rest of the box has the worst one
as its apex and the best one lay in the interior of this new box. Algorithm 4
formally describes the special case of this method (by [Bt+1]j we denote the
j-th dimension of the box, that is, a segment [aj , bj ]):

We carried out some numerical experiments to show the operation of differ-
ently compared Solar Method in practice. We compare the convergence of the
proposed method with the Nelder–Mead method and the Q-search for solving
auxiliary problems on the rays and some other classical optimization methods.
To test the performance, we use the Rosenbrock–Skokov function [7] (a gen-
eralization of the Rosenbrock function to large dimensions) as an example of
the complicated non-convex problem revealing some pointed drawbacks of the
proposed method. Classical methods we compare with are Steepest Gradient
Descent and Conjugate Gradients Method. Gradient Descent is a universally
applicable well-known solver and somewhat a baseline one, and Conjugate
Gradients Method, in the opposite, established himself in numerous practical
problems as a leader. It is a formal problem statement:

f(x) = (1− x1)
2 + 100

n∑
i=2

(xi − x2
i−1)

2.

Figures 1, 2 present the convergence curves for compared methods. The
blue line here represents the Conjugate Gradients Method (Fletcher–Reeves
version [8]), the orange line represents the Steepest Gradient Descent, the
green lines represent the individual curves of the Solar Method (started multi-
ple times), and the blue one is for their averaging. The abscissa axis measures
the iterations number, and the ordinate axis measures the function value (in
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Algorithm 4 Q-search

Require: y0 is a starting point, smin is a minimal size of the current box, N
is a number of probes, B̃ is an initial set

1: t = 0
2: B0 = B̃
3: while smin <

∑b
j=1(̃bj − ãj) do

4: Generate a set of random probes {y1, ..., yN} ⊂ Bt

5: Choose a probe y⋆ with the smallest value of φ from them
6: if f(y⋆) < f(yt) then
7: yt+1 ← y⋆; y⋆ ← yt
8: else
9: yt+1 ← yt

10: end if
11: Bt+1 ← Bt

12: for j = 1, ..., b do
13: if y⋆j < [yt]j then
14: [Bt+1]j ← [Bt+1]j ∩ [y⋆j ,+∞)
15: else
16: [Bt+1]j ← [Bt+1]j ∩ (−∞, y⋆j ]
17: end if
18: end for
19: t← t+ 1
20: end while

logarithmic scale, log10). Figures show that the Solar Method converges on
average faster than the Steepest Gradient Descent, but in some runs, it con-
verges faster than the Conjugate Gradient Method thanks to the specific jumps
in the function values. Note that the subsolver setting significantly affects the
method’s behavior: when using the Q-search method, the curve is smoother,
and the convergence at the initial iterations of the method slows down. It
emphasizes the need to consider various options for subsolvers to find a more
appropriate one to use with the proposed method and specific problem.

Remark 3 There are more complicated versions of the Q-search that we can use
within the Solar Method. These use more local information (properties of function
in the vicinity of the current point) to perform the step. Firstly, we can select the
reference probe differently: with maximal/minimal function value, as a center of mass
for all generated points (with weights proportional/inversely to the function value).
Note that, under certain conditions, we can use parallelization for computations
associated with each of the probes to obtain more information about the function
during the same operation time. Secondly, we can complicate the Q-search algorithm
by using the first-order information: we can apply several rules for cutting the box
that would take into account both the relative position of solution and reference
points and the gradient.
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Fig. 1 Convergence curves of the Solar Method with the Nelder–Mead subsolver, n =
400, b = 15, x ∈ [−3, 3]n, α = 0.5.
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Fig. 2 Convergence curves of the Solar Method with the Q-search subsolver, n = 400, b =
15, x ∈ [−3, 3]n, α = 0.5.

Remark 4 In many real-life applications, we face not only unimodal but also multi-
extrema problems. It is essential for a non-local method like Solar Method to operate
efficiently in such a complicated setup. The fundamental barrier here is that method
can stick to the local minimum instead of finding the globally optimal solution, and
most of the gradient methods developed for convex optimization cannot handle it.
The general construction of the Solar Method does not have this drawback.

However, in practice, to apply Solar Method to such problems, it is necessary
to use a subsolver avoiding local minima in corresponding low-dimensional cases.
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Of course, it is allowed for these methods to form discontinuous trajectories, the
descent along which is of a more complex, inconsistent manner and may include
conditional switching between the branches of this trajectory. An example is the
Subspace Tunneling Method. Its iteration consists of step from the current point in a
randomly generated direction with fixed step size, then step in the opposite direction
from the same point with the same step size, leading a function through the three
obtained probes (using parabolic interpolation, for example) and step to a minimum
of this function.

5 Scaling

In this section, we describe some perspectives in one possibly fruitful way to
develop the proposed method. It is an extension of the algorithm to multiple
levels determined by the dependence of some variables on the base ones. This
scaling framework provides a simple, easily manageable way to complicate the
method to improve its convergence characteristics. Indeed, such layering allows
one to construct more complex hypotheses on the problem, and on the other
hand, carefully control the iteration over them and prune some branches of
unsuitable options.

From an implementation point of view, this extension means using the
Solar Method (or only the rays generating procedure, that is a part of it) as an
auxiliary inside another Solar Method. In this way, we construct a hierarchy
of dependencies between variables: there a b1 primarily base variables defined
by the outer Solar Method, b2 of secondary base variables defined by the
second level method and dependent on the previous b1 arguments, and the rest
n− b2 − b1 variables, dependent on the last level’s base ones. It is a scheme of
3-level Solar Method, but we can similarly continue this layering.

Mathematically, this means to set the dependence of the final level vari-
ables on the primarily base ones in the form of a composition of two or more
transformations (depends on the number of levels). Of course, in the case of
linear dependencies, no matter how deep the composition is, we obtain the lin-
ear transformation again. However, while the composition of linear operators
is always a linear operator, here we consider the superpositions of transforma-
tions from a more wide class, that is optimization operators. Such a view of
optimization methods and their transformations, in general, can be fruitful for
developing the related theoretical questions.

Let us return now to the specific method we consider in this paper. The
practically important note is that for solving some real-life problems, it is
often efficient to use optimization schemes reducible to the subproblems with
dimensionality equal to 2. Therefore, we additionally list the auxiliary methods
applicable to optimize the 2-dimensional version of the original problem in a
Solar Method. One of the effective methods in the described setting may be the
Yu. E. Nesterov’s method for convex optimization on the square [1] acting as
a local search within the proposed non-convex optimization scheme. Another
option is a modification of the barycentric coordinates method proposed in [9].
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6 Conclusion

In this paper, we propose the Solar Method for unimodal optimization prob-
lems based on the introduced hypothesizing approach of searching the step
direction for the method. We also describe the means to evolve the proposed
scheme, such as scaling it to multiple levels or generalization for different
rays’ forms. The numerical experiments for the Rosenbrock–Skokov function of
various dimensions show a fairly regular but jumpwise convergence of the algo-
rithm. Unfortunately, the considered variants of the algorithm are somewhat
inferior to the Conjugate Gradient Method but usually outrun the Steepest
Descent Method.
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